

Partners in RenewHydro

Research partners User-partners from industry and government NTNU Statnett Fornybar Statkraft Hafslund Ă ENERGI Norge **SINTEF A**SFE Hydro Sira-Kvina KRAFTSELSKAP eviny NVE NINA 2 Skagerak Norwegian Institute for Nature Research Lyse NTE Energi University of TUSSA MILJØ-DIREKTORATET South-Eastern Norway Sognekraft SKL Norges miljø- og TrønderEnergi[®] biovitenskapelige universitet KRAFT VATTENFALL N 🔿 R C E ANDRITZ **VOITH HYDRO** Aker **ETH** zürich POWER GENERATION Solutions Hydro LULEÅ TEKNISKA UNIVERSITET Multiconsult sweco 🖄 I Enestor 🥥 MEDESO Norconsult 🕎 Kathmandu University

RenewHydro

Norwegian research centre for renewal of hydropower technology

RenewHydro shall provide knowledge and solutions that enable flexible hydropower to support the energy transition and reach national energy, climate and nature targets

Research partners:

Status January 2025

39 partners

8 years (2025 - 2032)

383 mill. NOK

16 active projects

1 associated project

x researchers

36 PhD & Postdoc

Target at >400 MSc

> 3000 m² laboratories

Program

Time	Program	Speaker	
10:00	Opening and welcome	Liv Randi Hultgreen	
		and Åse Slagtern	
10:15	The Research partners introduce	All research partners	
	themselves		
11:45	Lunch		
12:30	Hydropower in the energy transition – A	Asgeir Tomasgard,	
	Norwegian perspective	NTNU	
12:45	Hydropower in the energy transition – A	Robert Boes, ETH	
	European perspective	Zürich	
13:00	RenewHydro – vision, organization and	Liv R. Hultgreen	
	activities		
14:00	Break w/photo session		
14:30	User partners' research interests in	Statkraft, NVE and	
	hydropower w/panel discussion	Multiconsult	
15:30	Closing remarks	Liv R. Hultgreen	

FME RenewHydro

Norwegian research centre for renewal of hydropower technology

Liv Randi Hultgreen Executive Director FME RenewHydro

January 14th 2025

Objective

RenewHydro shall provide knowledge and solutions that enable flexible hydropower to support the energy transition and reach national energy, climate and nature targets.

Organization and meeting points

◙ NTNU (5) SINTEF NHH

Governir	ng bodies	Meeting points			
General Assembly:	1 repr. per partner	Yearly meeting			
RenewHy	dro Board	3 meetings per year		Lon March	
Executive	e Director		Oct-Des	Jan-IVIarch • March • General Assembly • Brukercase	
Managemer	nt Team (MT)	Monthly meeting	• Oct		
Perspectives - Fra	amework program	Programs & projects:	Board meeting Disitel consistent		
Research Program 1Usercase committeeResearch Program 2- innovation &Research Program 3commercialization		Monthly meetings	• Digital seminars	Board meeting	
Scientific	committee	Yearly meeting	July-Sept	Apr-June	
			• Sept • Usercase meeting	• June: Board meeting	
Fechnical meeting po	ints for all partners		Scientific commitee		
Center Seminar after G	General Assembly	Yearly meeting in March			
Digital breakfast and/o	r lunch seminars	Yearly in Sept/Oct			
Usercase meetings		In March and September			

Research project portfolio

Perspectives

- A: Hydropower's role with a large amount of wind and solar power
- B: Sustainable development of Norwegian hydropower
- C: Development of hydropower in a greatly changed climate

Program Framework conditions from the perspectives Provide a set of frameworks for technical, economic, climate, and environmental conditions under which hydropower is likely to develop and operate.

ONTNU **(i)** SINTEF

NHH 🚟 🌙 N

- RQ1. How can we increase the flexibility of hydropower technology?
- RQ2. How can we maintain and extend the lifetime while increasing the flexibility of hydropower technology?
- RQ3. How can digitalization increase the reliability and reduce the cost of maintenance of hydropower technology?
- RQ4. How can nature-based solutions contribute to the protection of biodiversity and ecosystem function in regulated watercourses?
- RQ5. What is the land use and carbon budget of present and future hydropower developments, and how can restoration and compensation contribute to nature-neutral or positive expansions?
- RQ6. How can environmental effects of hydropeaking be mitigated by operational and physical measures, and can technological solutions be developed to minimize ecosystem changes for pump-storage between reservoirs by preventing the transfer of fish species?
- RQ7. How can nature-based solutions and environmental technology innovations provide new solutions to ensure two-way fish migration in regulated rivers?
- RQ8. How can societal legitimacy of hydropower projects be obtained through a better balance of economic, environmental and social impacts?
- RQ9. How will climate change affect hydropower infrastructures and production and how to develop the role of hydropower in climate adaptation (flood protection) and environmental mitigation?
- RQ10. How will electricity markets and regulations develop under different perspectives about the future?
- RQ11. How should different market designs incentivize provision of flexibility and ancillary services from hydropower?
- RQ12. How can hydropower contribute to security of supply under different market designs and regulatory regimes?
- RQ13. What will characterize operational patterns and revenue streams for hydropower technology in the future power system?

Research questions in the programs

Research questions	FP	RP 1	RP2	RP3
RQ1. How can we increase the flexibility of hydropower technology?		1.1-3	2.1, 2.2	3.1-4
RQ2. How can we maintain and extend the lifetime while increasing the flexibility of hydropower technology?		1.1-4	2.2, 2.3	3.3
RQ3. How can digitalization increase the reliability and reduce the cost of maintenance of hydropower technology?		1.1-4	2.3	3.3
RQ4. How can nature-based solutions contribute to the protection of biodiversity and ecosystem function in regulated watercourses?		1.1	2.1	3.2
RQ5. What is the land use and carbon budget of present and future hydropower developments, and how can restoration and compensation contribute to nature-neutral or positive expansions?	4		2.2	
RQ6. How can environmental effects of hydropeaking be mitigated by operational and physical measures, and can technological solutions be developed to minimize ecosystem changes for pump-storage between reservoirs by preventing the transfer of fish species?		1.1	2.2	

Research questions in the programs

Research questions	FP	RP 1	RP2	RP3
RQ7. How can nature-based solutions and environmental technology innovations provide new solutions to ensure two-way fish migration in regulated rivers?	4	1.1		
RQ8. How can societal legitimacy of hydropower projects be obtained through a better balance of economic, environmental and social impacts?	4			
RQ9. How will climate change affect hydropower infrastructures and production and how to develop the role of hydropower in climate adaptation and environmental mitigation?	5			3.1, 3.2
RQ10. How will electricity markets and regulations develop under different perspectives on the future?	2		2.2, 2.3	
RQ11. How should different market designs incentivize provision of flexibility and ancillary services from hydropower?	1, 2, 3	1.2	2.1, 2.2, 2.4	
RQ12. How can hydropower contribute to security of supply under different market designs and regulatory regimes?	3		2.3	
RQ13. What will characterize operational patterns and revenue streams for hydropower technology in the future power system?	1, 3, 5	1.2	2.1, 2.2, 2.4	3.1, 3.4

RQ9. How will climate change affect hydropower infrastructures and production and how to develop the role of hydropower in climate adaptation (flood protection) and environmental mitigation? FP5, RP3.1-2

Program Framework conditions from the perspectives Provide a set of frameworks for technical, economic, climate, and environmental conditions under which hydropower is likely to develop and operate.

Research programs

RP1 Future Hydropower Plants Develop innovative, economically and environmentally sustainable technology for enhanced hydropower flexibility

RP2 More Power and Energy from Hydropower

Explore the potential and designs for sustainable large-scale expansion of Norwegian hydropower to provide vital flexibility services and security of supply

RP3 Hydropower in a changing climate

Develop innovative solutions and services to adapt, mitigate and enhance hydropower and reservoir capabilities under climate change

RQ1. How can we increase the flexibility of hydropower technology? RP1.1-3, RP2.1-2, RP3.1-4

RQ2. How can we maintain and extend the lifetime while increasing the flexibility of hydropower technology? RP1.1-4, RP2.2-3, RP3.3

RQ3. How can digitalization increase the reliability and reduce the cost of maintenance of hydropower technology? RP1.1-4, RP2.3, RP3.3

🖸 NTNU 🌀 SINTEF NHH 🚟 🖉 NINA

RQ11. How should different market designs incentivize provision of flexibility and ancillary services from hydropower? FP1-3, RP1.2, RP2.1, 2.2 and 2.4

Program Framework conditions from the perspectives Provide a set of frameworks for technical, economic, climate, and environmental conditions under which hydropower is likely to develop and operate.

Research programs

RP1 Future Hydropower Plants Develop innovative, economically and environmentally sustainable technology for enhanced hydropower flexibility

RP2 More Power and Energy from Hydropower

Explore the potential and designs for sustainable large-scale expansion of Norwegian hydropower to provide vital flexibility services and security of supply

RP3 Hydropower in a changing climate

Develop innovative solutions and services to adapt, mitigate and enhance hydropower and reservoir capabilities under climate change

RQ10. How will electricity markets and regulations develop under different perspectives about the future? FP2, RP2.2-3

RQ12. How can hydropower contribute to security of supply under different market designs and regulatory regimes? FP3, RP2.3

RQ13. What will characterize operational patterns and revenue streams for hydropower technology in the future power system? FP1, FP3, FP5, RP1.2, RP2.1, 2.2, 2.4, RP3.1 and 3.4

NTNU SINTEF

Program Framework conditions from the perspectives Provide a set of frameworks for technical, economic, clin conditions under which hydropower is likely to develop and operate.

RQ8. How can societal legitimacy of hydropower projects be obtained through a better balance of economic, environmental and social impacts? FP4

RQ5. What is the land use and carbon budget of present and future hydropower developments, and how can restoration and compensation contribute to nature-neutral or positive expansions? FP4, RP2.2

RQ7. How can nature-based solutions and environmental technology innovations provide new solutions to ensure two-way fish migration in regulated rivers? FP4, RP1.1

Research programs

RP1 Future Hydropower Plants Develop innovative, economically and environmentally sustainable technology for enhanced hydropower flexibility

RP2 More Power and Energy from Hydropower

Explore the potential and designs for sustainable large-scale expansion of Norwegian hydropower to provide vital flexibility services and security of supply

RP3 Hydropower in a changing climate

Develop innovative solutions and services to adapt, mitigate and enhance hydropower and reservoir capabilities under climate change

RQ6. How can environmental effects of hydropeaking be mitigated by operational and physical measures, and can technological solutions be developed to minimize ecosystem changes for pump-storage between reservoirs by preventing the transfer of fish species? RP1.1, RP2.2

RQ4. How can nature-based solutions contribute to the protection of

biodiversity and ecosystem function in regulated watercourses? RP1.1, RP2.1

Framework Program

Programme	Framework	Duration	2025-2032	Responsible	NHH	Program Manager	Mette Bjørndal
Title	Perspectives of	n the future frar	neworks for hyd	dropower		-	
Objective: Prov under which hy	onditions	Project leaders & <i>Partners</i>					
FP1 Enabling a Provide insight	nd competing t into the charac	echnologies (20 teristics of futur	25-2029) re competitors i	n the markets f	or energy and po	ower.	Michael Belsnes, SINTEF NHH, USN, SINTEF
FP2 Market de Understand ho electricity marl	ropean	Mette Bjørndal, NHH IØT NTNU, NHH, USN, SINTEF					
FP3 Future pov Understand the		Kyriaki Tselika, NHH <i>USN, NHH, SINTEF</i>					
FP4 Societal ar European and societal legitim	Kristin Linnerud , NMBU <i>NMBU, NINA, SINTEF</i>						
FP5 Trends in r Develop inflow explore implica	Øyvind Paasche, NORCE NORCE, SINTEF						

Research Program 1

Programme	RP1	Duration	2025-2032	Responsible	NTNU	Program Manager	Jonas BPaulsen
Title	Future Hydrop						
Objective: Dev	Project leaders						
hydropower fle	& <i>Partners</i>						
RP1.1 New hy Enhance efficie	Kaspar Vereide, NTNU NTNU (IBM, EPT, IGP), NORCE, NINA, SINTEF						
RP1.2 Design f	Jonas BP., NTNU						
Improved flexi	NTNU (IBM, IEL, EPT),						
fatigue loads o	USN, NINA, SINTEF						
RP1.3 Holistic	Thomas Øyvang , USN						
Development of	IEL NTNU, USN, NINA,						
maintenance, a	SINTEF						
RP1.4 Sedimer	Elena Pummer , NTNU						
Development of	<i>NTNU (EPT, IBM), KU</i>						

Research Program 2

Programme	RP2	Duration	2025-2032	Responsible	SINTEF Energi	Program Manager	Linn-Emelie Schäffer			
Title	More pow	er and energ	y							
Objective: Exp hydropower to	lore the pot provide vit	lorwegian	Project leaders & <i>Partners</i>							
RP-2.1 Sustain Develop metho	RP-2.1 Sustainable flexibility services from hydropower (2025-2028) Linn Emelie, SINTEFDevelop methods and metrics for quantifying flexibility services from hydropower.IBM NTNU, NINA, NORCE, NHH									
RP-2.2 Sustainable upgrading and expansion of the hydropower system (2025-2032)Tonje Aronsen , NINADevelop and investigate concepts for increasing capacity and storage from hydropower, incl pumped storage, market designs, and environmental and societally acceptable solutions. <i>NTNU (EPT, IEL, IBM), NMBU,</i> NINA, SINTEF										
RP-2.3 Provision of energy security and adequacy from hydropower (2025-2032)Stefan Rex , SINTEFEstablish a framework for assessing energy security and adequacy from hydropower.USN, IEL NTNU, NHH, SINTEF										
RP-2.4 Hydropower resource allocation and markets (2027-2031)Stein-Erik Fleten , NTNUUnderstand how hydropower resource allocation best can adapt to the future.NHH, IØT NTNU, SINTEF										

Research Program 3

Programme	RP3	Duration	2025-2032	Responsible	NINA	Program Manager	Line E. Sundt-Hansen		
Title	Hydropov	wer in a chang	ing climate						
Objective: Dev and reservoir c	ce hydropower	Project leaders & Partners							
RP-3.1 Adapta seasonality (20 Demonstrate n the new role o	Oddbjørn Bruland , NTNU NTNU (IBM, EPT), NORCE, SINTEF								
RP-3.2 The rol e Develop knowl	Kim Magnus Bærum , NINA IBM NTNU, NMBU, NHH, SINTEF, NINA								
RP-3.3 The impacts of climate change on hydropower infrastructures (2030-2032) NNDevelop criteria, methods and solutions for the operation and maintenance of the hydro-powerInfrastructure under more frequent, large variations in weather conditions									
RP-3.4 Climate Utilize changed	Ana Bustos, SINTEF NORCE, NINA, SINTEF								

Explanation to partner abbreviations

• NTNU

- EPT: Energy and Process Engineering (turbines, pumps, ...)
- IBM: Civil and Environmental Eng. (dam, waterway, tunnel, hydrology, ...)
- IEL: Electric Energy (generators, net, ...)
- IGP: Geoscience
- IØT: Industrial Economics and Technology Management
- NHH: Norwegian School of Economics
- SINTEF Energy
- NINA: Norwegian Institute for Nature Research
- NTNU ⑤ SINTEF NHH ▲NINA

- USN: University of South-Eastern Norway
- NMBU: Norwegian University of Life Sciences
- NORCE: Norwegian Research Centre
- KU: Kathmandu University
- LTU: Luleå Technical University
- ETH Zürich: Eidgenössische Technische Hochschule Zürich

User cases

User cases involving hydropower plants

- Driva Kraftverk (Trønderenergi)
- Litjfossen Kraftverk (Trønderenergi)
- Sira-Kvina vassdraget (Sira Kvina)
 - Environment-friendly extreme reconstruction of the Sira-Kvina system for scenarios with 2000, 5000 og 10 000 MW power- and pumped storage plant
- Gravann pumpekraftverk (Sira Kvina)
 - New pumped storage plant between Sirdalsvann and Gravann
- Tordsvatnet and Tafjordvassdraget (Tafjord)
 - Gentle utilization of resources in protected areas
 - Development of Tafjordvassdraget to maximize value creation
- Holen I og II Kraftverk (Å Energi)
- Two new power plants for intermittent operation (user partner)

User cases – involvement and organization

- Each project can choose 1-2 user cases, within 6 months after start-up
- The program managers will keep an overview on who selects which case
- Every case should have duration 1-3 years
- The user partner will provide a CaseRep who will be point of contact
- We will have a seminar during Autumn 2025 where the researchers work with the cases together with CaseReps
- A user case can have workshop series, and also have shorter and more intensive duration
- Cases will be presented on the yearly center seminars

Stay informed and follow us 😳

Linked

RenewHydro website

