

How much water will be available for use in the mid- and long-term horizon?

Climate change
Land use changes/irrigation practice

Case study: Kizilirmak River Basin, Turkey

- Several hydropower projects
- Intense agricultural production (to be extended)
- Source of drinking water

Irrigation dams are huge infrastructure

WEAP as a modelling tool

- Hydrological module as the basis for supply calculations
- Incorporates human consumption and use of water, and the effect of water infrastructure
- Supports analysis of the effects of policy scenarios on the water resources (e.g. changes in priorities of water use, land management practice, etc.)
- Supports long-term analysis of available water resources (e.g. climate change)
- Supports dynamic linking to other tools, scripting

WEAP Model setup

The river basin schematically presented

- Red numbers on top: sub-basin numbering
- Black numbers: volume of reservoirs in mill. m³

Model calibration – an important first step

11

Scenario definition (based on RCP4.5)

	Scenario name	Temperature Summer/Winter [º C]	Precipitation Summer/Winter	Irrigation
	Year 2013	Observed	Observed	As built by 2013
2050	Year 2050A	+2.5 / +1.5	-5 % / -2.5 %	No new from 2013
	Year 2050B	+2.5 / +1.5	-5 % / -2.5 %	As planned
2090	Year 2090A	+3 / +2	-10 % / -5 %	No new from 2013
	Year 2090B	+3 / +2	-10 % / -5 %	As planned
	Year 2090C	+3 / +2	-10 % / -5 %	As planned + more
	Dry Year 2090C	+3 / +2	-10 % / -5 %	As planned + more

Scenario Results

E	Scenario name	Temperature Summer/Winter [º C]	Precipitation Summer/Winter	Irrigation
0502 0602	Year 2013	Observed	Observed	As built by 2013
	Year 2050A	+2.5 / +1.5	-5 % / -2.5 %	No new from 2013
	Year 2050B	+2.5 / +1.5	-5 % / -2.5 %	As planned
	Year 2090A	+3 / +2	-10 % / -5 %	No new from 2013
	Year 2090B	+3 / +2	-10 % / -5 %	As planned
	Year 2090C	+3 / +2	-10 % / -5 %	As planned + more
	Dry Year 2090C	+3 / +2	-10 % / -5 %	As planned + more

Average flow [m³/sec]

Analysis: the effect of water losses and demand fulfillment with and without reservoirs

All numbers in m³/s

Conclusions Kizilirmak, Turkey

- The effect of climate change and irrigation will reduce the available water resources significantly.
- Small changes in climate will potentially make big changes in runoff when low runoff coefficients (low effective rainfall & high evaporation)
- The effect of climate change is stronger than irrigation in some parts of the basin opposite in other parts.
- The risk profile of the investment portfolio is to a large extent affected by the location of the prospects in the river basin
- Integrated assessment of the water resources needed in order to plan the mid- and long-term available water resources

Risks of future hydropower developments

Climate change:

- Lower precipitation?
- Higher evaporation?
- More intense short-term prec. events?
- Longer/more frequent droughts?

Changes in use of water/policies:

- Growing population
- More food needed/irrigation
- Environmental requirements
- Multi-purpose reservoirs

Change in storage capacity

Source: Wisser et al., 2013

Planning the water resources:

A challenge with many and big uncertainties

Robust Methodologies & Tools needed

Owens Lake, California